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Symplectic Interpretation for the Discretization of
Some Physical Magnitudes

V. Liern1 and J. Olivert2
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We study some conditions for a pullback of a symplectic nonvectorial fiber bundle
to have a discrete holonomy group. By applying this structure to the relativistic
massless free particles for a hypersurface of simultaneity, and by using symplectic
mechanics methods, we obtain that some physical magnitudes take discrete values.

1. INTRODUCTION

The Aharonov ±Bohm experiment was of great significance in quantum

physics (Wu and Yang, 1975). It showed that the phase of the electron wave
function, when a beam of monoenergetic electrons is diffracted around a

solenoid, is quantized according to Dirac’ s theory.

A geometrical explanation of this phenomenon can be obtained by means

of the fiber bundle theory. Actually, a principal fiber bundle is used with

structural group U (1) that permits us to interpret the phase discretization

by the fact that the closed trajectories generate a discrete holonomy group
(Moriyasu, 1983).

Wu and Yang (1975) and Moriyasu (1983) described completely the

geometrical meaning of the above experiment. However, if we want to obtain

a geometrical interpretation for the discretization of some physical magnitudes

for massless elementary free particles, we need to overcome two difficulties:

(a) A principal bundle characterizes the interaction, but it does not

provide any information about the particles involved.
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(b) The Aharonov ±Bohm experiment deals with electron beams, i.e.,

at every instant the observer sees an electron beam that bifurcates

before going around an electromagnet and afterward these branches
impact on the same point.

In order to solve problems of the first type, we constructed nonvectorial
associated fiber bundles provided with a connection, which we called seeded
fiber bundles (Liern and Olivert, 1995a, b). In such bundles the motion

structure of the particles, a symplectic structure (Souriau, 1970a), is combined

with a connection that expresses the gravitational interaction given by gen-

eral relativity.
On the other hand, if the seeded fiber bundle base is a space±time

manifold } (Sachs and Wu, 1983), the simultaneity condition mentioned in

(b) cannot be achieved. Therefore, it is necessary to design methods to work

on a simultaneity hypersurface , Landau’ s manifold (Olivert, 1980), in such

a way that most of the properties in } are preserved. So we use the idea of

a pullback bundle for the seeded fiber bundles. We show that some physical
magnitudes are transformed in such a way that they only admit a discrete

number of values.

2. A NEW SYMPLECTIC FORMALISM: SEEDED FIBER
BUNDLES

Usually, the evolution of a dynamical system is studied over a space±time

manifold. However, in this paper we want to treat both the internal symmetries

and the interactions. Therefore we need to consider a principal G bundle l 5
(P, B, p , G) with a connection *. The group G represents the local symmetries

and the connection represents the interaction. The dynamical system to con-

sider is (F, s F), a symplectic Hausdorff manifold left G space. If we are
interested in the behavior of F in l , we can construct l [F ] 5 (PF , B, p F ,

G), a fiber bundle associated to l with fiber type F. In order to obtain a more

useful structure we need to set some requirements.

Definition 1. The fiber bundle l [F ] 5 (PF , B, p F , G) described above
is a seeded fiber bundle (SFB) if there exists a foliation 6 contained in the

horizontal distribution such that:

(i) PF admits an atlas with flat charts (Brickell and Clark, 1970) with

respect to S and 5: 5 ker p F*p.

(ii) Every fiber intersects every leaf at most at one point.

These bundles will be denoted by l [F ](S) 5 (PF , B, p F , G; S ).

Under these conditions, the foliation S can be projected to a foliation

V over B:
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V : 5 {X | X is a vector field in B: p F*Y 5 X + p F , Y P S} (1)

such that dim V 5 dim S. If B has a connection, the integral manifolds of
V will allow us to describe the motion over B. Let X be a vector field of V ,

c a maximal integral curve of X, and t c
t : Tc(0) B ® Tc(m) B the parallel displace-

ment along c (t) " t P I, where I is the domain of c. We say that l [F ] is

provided with a motion law if

t c
t V (c (0)) 5 V (c (t)) (t P I ) (2)

(a) If V is a 1-foliation, the motion law gives rise to geodesics in B
(Liern and Olivert, 1995b).

(b) If V is a 3-foliation, the motion law gives rise to totally geodesic

integral manifolds in B (Liern and Olivert, 1995b).

This definition can be characterized in a more useful way as follows

(Liern and Olivert, 1995a).

Theorem 1. Let l 5 (P, B, p , G) be a principal G bundle with a

connection * and let (F, s F) be a symplectic Hausdorff manifold left G
space. A fiber bundle l [F ] 5 (PF , B, p F , G) associated to l with fiber type

F is SFB if and only if for every m P B there exists a presymplectic regular

manifold (Vm , s m) , PF satisfying:
(a) dim Vm 5 k (constant) " m P B.

(b) There is a surjective submersion c m: Vm ® p 2 1
F (m) such that

p 2 1
F (m) 5 Vm/ker c m*.

(c) Given m, n P B, if Vm ù Vn Þ 0¤, then Vm 5 Vn.

(d) ker( s m)w , 4w , where 4 is the horizontal distribution in PF induced

by *, and w P Vm.

Example. For i 5 1, 2, let l i[U i] 5 (PUi, Bi , p i , Gi) be a fiber bundle

associated to a principal G i bundle l i with fiber type (Ui , s i), a symplectic

manifold left Gi space. The product

j [U1 3 U2]: 5 (PU1 3 PU2, B1 3 B2, p 1, 3 p 2, G1 3 G2)

is a SFB. So, let us consider the Ehresmann connection l i (i 5 1, 2) in l i ,

and *1 3 *2 in j 5 l 1 3 l 2. Given (m1, m2) P B1 3 B2, we construct
the manifold

V(m1, m2) 5 PU1 3 p 2 1
2 (m2)

The symplectic 2-form of the fiber p 2 1
1 (m1) 3 p 2 1

2 (m2) , V(m1, m2) induces a

presymplectic 2-form in V(m1, m2). The family {(V(m1, m2),

s (m1, m2))}(m1, m2) P B1 3 B2 satisfies Theorem 1.
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Remarks. (a) If we consider the family

Vm1 3 m2 : 5 p 2 1
1 (m1) 3 PU2, (m1, m2) P B1 3 B2, in j [U1 3 U2]

Theorem 1 also holds, showing the nonunicity of the ª seeded structure.º

(b) If l 1 or l 2 is a nontrivial bundle, then j [U1 3 U2] is a nontrivial
bundle.

This example provides a method to construct an SFB. However, from

a physical point of view we are interested in the evolution of dynamical
systems over one space±time manifold (not over a product) or even more

generally over manifolds embedded in it. Hence, we need to see what happens

if we ª reduceº the base manifold of an SFB.

Given a differentiable manifold L and an injective immersion f : L ®
B, we consider f*( l [F ](S), the pullback bundle of l [F ](S). By construction

the diagram

pr2
f *(PF) Ð Ð ® PF

½
½
½
¯

½
½
½
¯

pr1 p F

f
L Ð Ð ® B

is commutative, where

f *(PF) 5 L 3 B PF 5 {(m, x) P L 3 PF : f (m) 5 p F (x)}

5 ø
m P L

({m} 3 p 2 1
F (( f (m)))

pr1(m, x) 5 m, pr2(m, x) 5 x, " (m, x) P f *(PF) (3)

It is easy to prove the following properties:

Lemma 1. (a) pr2 is injective.

(b) If v is a vertical vector in f *(PF), then pr2* (v) is a vertical vector

in PF .

Let + : 5 f (L) , B be an immersed submanifold of B. We define the

correspondence V 1: + ® 3(T+) as

V 1( f (m)) 5 V ( f (m)) ù Tf(m)+, " m P L (4)

where V is the p-foliation on B given by (1).

Lemma 2. If dim V 1( f (m)) 5 ko (constant) " m P L, then

V * : 5 { f 2 1
* (X1): X1 P V 1} (5)

is a ko-foliation on L.
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Proof. It can be checked that V 1 is a ko-distribution on +. Next, we

prove that V 1 is involutive. Let X1, Y1 be two vector fields in V 1; then there

are two vector fields XÄ , YÄ such that

p F* XÄ 5 X1 + p F , p F*YÄ 5 Y1 + p F

Then,

[X1, Y1] + p F 5 p F*[XÄ , YÄ ] , p F*S 5 V (6)

As X1, X2 are tangent to +, by construction [X1, X2] is tangent to + and for
(6), [X1, X2] , V 1. Moreover, as V 1 is a ko-foliation of + and f : L ® + is a

diffeomorphism, then V * is a ko-foliation on L. n

By Lemmas 1 and 2 and (4) we have the following result:

Theorem 2. Let l [F ](S) 5 (PF , M, p F , G; S) be an SFB, L a differentiable

manifold, and f : L ® B an injective immersion. If dim V 1( f(m)) 5 ko(constant)

" m P L, then f *( l [F ](S)) is an SFB.

Proof. Let us consider

S* : 5 {X 8 5 ( f 2 1
* X1, XÄ ), X1 P V 1, XÄ P S such that p F* XÄ 5 X1} (7)

which is nonempty by Lemma 2. We will proove that S* is a ko-foliation on

f *(PF). Let X 8, Y 8 P S*; then a little algebraic manipulation leads to

[X 8, Y 8] 5 [( f 2 1
* X1, XÄ ), ( f 2 1

* Y1, YÄ )] 5 ( f 2 1
* [X1, Y1], [XÄ , YÄ ])

Notice that [ f 2 1
* X1, YÄ ] 5 [XÄ , f 2 1

* Y1] 5 0, because every term in the Lie

bracket depends on different variables.

Let X 8 P S*; we have that

pr2*X 8 5 pr2*( f 2 1
* X1, XÄ ) 5 XÄ + pr2 P 6 (8)

X 8 can be split as X 8 5 X 8H 1 X 8V where X 8H (resp. X 8V) denotes the horizontal

(resp. vertical) part of X 8. If X 8V Þ 0, by Lemma 1, pr2*X 8 would have a

vertical part. But by Definition 1, 6 is horizontal, and by (8), pr2*X 8 P 6,

and we would get a contradiction. Therefore X 8 is horizontal.

Now, let H* be a leaf of S*; by (8) and Lemma 1, there exists a leaf H
of 6 such that

pr2(H* ù pr 2 1
1 (m)) , H ù p 2 1

F ( f(m)) (9)

As l [F ](S ) is an SFB, then H* ù pr 2 1
1 (m) is empty or a singleton.

Further, if {hi}i P I is an atlas of PF with flat charts for the foliation 6 3
5, then { f 2 1hi | +}i P I is an atlas of f *(PF) with flat charts for the foliation

S* 3 5. n
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Under the assumptions in Theorem 2, l [F ](S) and f*( l [F ])(S*) are

SFBs. Theorem 1 guarantees the existence of presymplectic manifolds {(Vm ,

s m)}m P B and {(VÄ n , s Ä n)}n P L contained in PF and f*(PF), respectively. The
manifolds

E 5 ø
m P B

Vm , E* 5 ø
n P L

VÄ n (10)

are also presymplectic manifolds (Liern and Olivert, 1995b) with Lagrange

forms s and s Ä , respectively, satisfying

s | Vm 5 s m , " m P B, s Ä | Vn 5 s Ä n , " n P L (11)

Proposition 1. Let (E, s ) and (E*, s Ä ) be the presymplectic manifolds

defined by (10) and (11). Then pr*2 s 5 s Ä , where pr2: E* ® E is the map
induced by pr2.

Proof. Let us consider the SFBs l [F ](S ) and i*( l [F ])(S*), where i is

the canonical immersion. By Theorem 1 we have that

S | Vm 5 ker s | Vm 5 ker s m , m P B (12)

S *| VÄ n 5 ker s Ä | VÄ n 5 ker s Ä n , n P L

For n P L the diagram

pr2 ) VÄ nVÄ n Vf (n)Ð Ð Ð Ð Ð ®
½
½
½
¯

½
½
½
¯

c
Ä
n c f (n)

g f (n)

{n} 3 p 2 1
F (n) Ð Ð ® p 2 1

F ( f (n))½
½½¯

-½½
½
hÄ n hf (n)

F

is commutative, where g f(n)
n , hÄ n , hf(n) are diffeomorphi sms, and c Ä n and c f(n)

are surjective submersions satisfying part (b) of Theorem 1.

The maps

w Ä n: 5 hÄ n + c Ä n , w f(n) : 5 hÄ f(n) + c f(n) (13)

are also surjective submersions such that

F 5
VÄ n

Ker w Ä n*

, F 5
Vf(n)

Ker w f(n)*
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By (8) and (12), w f(n) + pr2 5 w Ä n. As s n 5 w *n s F and s f (n) 5 w *f(n) s F, we have

that pr*2 s | vf(n) 5 s Ä | vn. As this can be done for all n P L, and as E and E* are

disjoint unions of manifolds, we have that pr*2 s 5 s Ä . n

3. COUNTABLE HOLONOMY GROUPS AND SEEDED FIBER
BUNDLES

The above results show when the seeded structure is maintained via

pullback. However, if our purpose is to extend the idea of Wu and Yang (1975)

in the sense that a principal G bundle is ª responsibleº for the discretization, we

must ask some extra requirements for the principal G bundle that gives rise

to the SFB.
Given l 5 (P, B, p , G) a principal G bundle, let L be a differentiable

manifold and f : L ® B an injective immersion; we can consider f *( l ) 5
( f *(P), L, p1, G) the pullback of l , where

f *(P) 5 L 3 B P, p1(l, p) 5 l, (l, p) P L 3 B P (14)

The map p2: f *(P) ® PF , given by

p2(l, p) 5 p, (l, p) P L 3 B P (15)

is differentiable and satisfies p + p2 5 f + p1 (Kobayashi and Nomizu, 1963).

In the principal G bundle f *( l ) there is a unique connection ** such

that p2* (**) , * (Kobayashi and Nomizu, 1963). In addition, if w*, V *

are the connection form and the curvature form of *, respectively, then

p*2 V * 5 V **, p*2 w* 5 w** (16)

where V **, w** are the curvature form and the connection form of **,

respectively.

Theorem 3. Let l 5 (P, B, p , G) be a principal G bundle with a

connection *, and let f *( l ) be the pullback of l given by (15). If

p2*(**(m, p)) , Ker d (w*)p , " (m, p) P f *(P) (17)

then the holonomy group of f *( l ) is countable.

Proof. Let f and f 0 be the holonomy group and the restricted holonomy

group of **, respectively. Since L is a connected manifold and admits a

countable basis, f / f 0 is countable.

On the other hand, let X 8, Y 8 be two vector fields of f * P; we have that

V **(X 8, Y 8) 5 dw**( p**X 8, p**Y 8) 5 dp*2 w*( p**X 8, p**Y 8)

5 p *2 dw*( p**X 8, p**Y 8) 5 dw*( p2*p**X 8, p2*p**Y 8) 5 0
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By the Ambrose ±Singer theorem (Choquet-Bruhat et al., 1978), the Lie

algebra of f is trivial. Then, so we have that f 0 5 {e}; therefore f /{e} 5
f is countable. n

Remark. Every trivial principal G bundle with flat connection obviously

satisfies (17).

Husemoller (1966) proved that the fiber bundle f *( l )[F ] 5 ( f *(P)F ,

L, p1F, G) associated to f *( l ) with fiber type (F, s F) is L-isomorphic to the

SFB f *( l [F ](S)) described in (3). Therefore, under the assumptions in Theo-
rem 2, ( f* l )[F ] is an SFB. Then, we have an SFB generated by a principal

G bundle with a countable holonomy group. Now we can apply this to

elementary free particles.

4. SIMULTANEITY AND MASSLESS ELEMENTARY FREE
PARTICLES

Souriau (1970a, b) introduced the concept of massless elementary free

particles as a symplectic manifold (U, s U) of dimension 6 which admits

PoincareÂ’s restricted group Go , as dynamic and transitive group. Moreover,

(U, s U) is diffeomorphic to IR4 3 S 2 and symplectomorphic to an orbit of
the coadjoint representation of Go. in its coalgebra, T *e Go.

Let M4 be the space±time of Minkowski, and h the Minkowski tensor.

In (M4, h ), a massless elementary free particle is characterized by

h (p, p) 5 h (w, w) 5 0 (18)

where p is the energy-momentum vector and w is the polarization of the
particle.

Let x , s be the particle’ s helicity and its spin, respectively; then w 5
x sp. There exists an isotropic vector Y satisfying *Mx 5 p ` Y, where *Mx

is the dual of the Lorentz momentum. The evolution space of (U, s ),

V : 5 {y 5 (x, I, J ), I 5 p, J 5 x Y /s} (19)

is a Hausdorff nine-dimensional manifold (Souriau, 1970a; Grigore and Popp,

1992). Furthermore, there is a surjective submersion u : V ® U given by u ( y)

5 (siI iJ n 1 x Ù I, I ), where n is the element of volume of (M4, h ). The

manifold V can be provided with a presymplectic form s V 5 u * s U , and its

characteristic foliation S : 5 Ker( s V)b has dimension 3.
Liern and Olivert (1995b) proved the following:

Theorem 4. Let j Ä 5 (E, M4, p Ä , Go) be a principal Go , bundle over M4

(the Minkowski space±time) with structural group Go , with the fiber type

(U, s ) given above. Then:
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(a) j Ä [U ](S) 5 (EU , M4, p Ä U , Go; S) is an SFB that we call the Souriau

fiber bundle.

(b) The motion law given by (2) gives rise to isotropic hyperplanes in M4.

If we extend j Ä [U ](S) 5 (EU , M4, p Ä U , Go; S) to an SFB

j [U ](S) 5 (PU , }, p U , Go; S (20)

with base manifold } (the space±time manifold), such that j [U ](S) is locally

isomorphic to j Ä [U ](S), the motion law given by (2) gives rise to totally

geodesic integral manifolds of dimension 3 in }

4.1. Pullback Bundles and Massless Free Elementary Particles

Let C P } be an observer, p a position in C, and up the 4-velocity of

C in p. It has been proved (Olivert, 1980) that there is a unique regular three-

dimesional submanifold of } Lp (called a Landau manifold ) such that the

physical space Mp is tangent to Lp in p, and whose points are simultaneous

to p in standard time.
Let (U, s U) be a massless elementary free particle and Lp a Landau

manifold. According to (3), we can construct the pullback of j [U ](S) 5 (PU ,

}, p U , Go; S), determined by the canonical inclusion i: Lp ® }, which is

denoted by i*( j [U ]) 5 (P *U, Lp , ( pr1)U , Go).

We have shown (Liern and Olivert, 1995b) that the map &: Lp ® 3(TLp)

given by

&(m): 5 V (m) ù i*(TmLp), m P Lp (21)

is a 2-foliation on Lp.

By (20) and Theorem 2, i*( j [U ]) is an SFB that can be rewritten as

i*( j [U ])(S*) 5 (P *U, Lp , ( pr1)U , Go; S*).

On the other hand, we can consider the pullback of the principal bundle

j , in the same way as in (14) i*( j ) 5 (P*, Lp , p1, Go), where

P* 5 Lp 3 } P 5 {(m, x) P } 3 P: i (m) 5 p (x)}

p1(m, x) 5 m, p2(m, x) 5 x, " (m, x) P P* (22)

Let w be the one-form of the connection * in the principal G bundle

j and let ** be the connection induced in i*( j ) (Kobayashi and Nomizu,

1963). We can suppose that p2*(**(m, p)) , ker dwp, " (m, p) P P*, because

j [U ](S) is constructed in such a way that locally satisfies the conditions of
the SFB j Ä [U ](S) given by Theorem 4. As they are trivial bundles, the condition

(17) is trivially verified.

As the Landau manifolds admit a countable basis, we can apply Theorem

3; then the holonomy group of i*( j [U ]) is countable.
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4.2. Discretization

The motion law described by (2) does not allow us to work with symplec-

tomorphisms because the space±time manidold is neither presymplectic nor

symplectic. In consequence we cannot study the evolution of the wavefronts

originating in the massless elementary free particles. However, it is necessary

to study physical magnitudes that are preserved in time. Therefore, we want
to work in the total space of an SFB because it admits presymplectic structures

[see (10)].

In the same way as we define the motion law in }, we can impose a

condition (which we call a stability condition) by using symplectomorphisms

that preserve the symplectic structures.

Let j [U ](S) 5 (PU , }, p U , Go; S) be an SFB given by (20). By (1)
there exists in } a 3-foliation p U-related to S. Let X be a vector field of V ,

c: I ® }(I , R ) an integral curve of X, and t c
t : p 2 1

U (c (0)) ® p 2 1
U (c (t)) the

parallel displacement along c in PU. Given p P PU , we can define the curve

b c(t, p): I ® PU , given by

b c(t, p) 5 t c
t ( p), t P I, where p U( p) 5 c (0) (23)

Then for every p P p 2 1
U (c (0)), we have that { b c(t, p)}p P p 2 1

U (c(0)) is a family
of differentiable curves in PU.

By construction, ( - / - t) b c(t, p) , S ( b c(t, p)); then { b c(t, p)}p P p 2 1
U (c(0))

induces a family of curves

g c(t, p); I 3 E ® E (24)

where E is the manifold given by (10).

Definition 2. We say that the SFB j [U ](S) is c-stable if for every t0 P
I, g c(t0, p) is a symplectomorphism.

By direct calculation we can prove the following properties:

Proposition 2. Let j [U ](S) 5 (PU , }, p U , Go , S) be an SFB.

(a) If in j [U ](S) there exists a family of presymplectic manifolds

{(Vx , s x)}x P } satisfying (a)±(d ) of Theorem 1 and these are symplectomor-

phic, then j [U ](S) is c-stable for every integral curve of each vector field of V .

(b) If j [U ](S) is c-stable, there exist curves in PU that preserve the

foliation in the presymplectic manifolds in such a way that the fibers coincide
with the parallel displacement.

We can prove that the c-stability condition is inheritable via a pullback.

Proposition 3. Let X* be a vector field of &, c an integral curve of X*,

and cÄ 5 i + c. If j [U ](S) is cÄ -stable, then i*( j [U ])(S*) is c-stable.



Symplectic Mechanics 535

Proof. We construct

a c(t, (m, x)) : 5 (c (t), g cÄ (t, pr2 m, x))) (25)

a family of differentiable curves in P*U, where (t, (m, x)) P I 3 P*U and g cÄ is

the family of curves described by (24).

According to (7), ( - / - t) a c , S*; therefore we define

{ r c(t, (m, x)}(m, x) P E* a family of differentiable curves in E*.
By Proposition 1, the Lagrange forms of (E*, s Ä ) and (E, s ) are related

by s Ä 5 pr*2 s , and by construction

pr2 r c
t 5 g cÄ

t pr2 (26)

Given t0 P I, as j [U ](S) is cÄ -stable, we have that ( g cÄ
t0)* s 5 s . Then,

( r c
t0)* s Ä 5 ( r c

t0)* pr*2 s 5 (pr2 r c
t0)* s

5 ( g cÄ
t0 pr2)* s 5 pr*2 ( g cÄ

t0)* s 5 pr*2 s 5 s Ä n (27)

Consider X* a vector field of & and

c: [0, T0] ® Lp , such that c (0) 5 c (T0) 5 m0 P Lp (28)

an integral curve of X* for which i*( j [U ])(S*) is c-stable.
The curve c induces symplectomorphisms in E* whose restrictions to

the fibers coincide with the parallel displacement [see (23)]. Moreover, each

curve satisfying (28) defines an element of the holonomy group. Theorem 3

ensures that the holonomy group of i*( j [U ])(S*) is countable. Thus the family

of symplectomorphisms has necessarily a countable cardinality.
Thus the set of images of each leaf H S*

of S* is countable. Applying

the Noether theorem to each leaf in this set, we obtain discrete transformed

physical magnitudes.

5. DISCUSSION

Conceptually, this paper started from the fact that using a principal U (1)

bundle d (with a connection and a discrete holonomy group), one can describe

the quantization of the phase of the electron wave function observed in the

Aharonov ±Bhom experiment. We showed that this property is satisfied not

only by principal bundles. By using a pullback of an SFB, under certain
geometrical requirements, we obtain qualitatively that some physical magni-

tudes take only a discrete number of values. However, whereas in d the

discrete holonomy group corresponds exactly to the Dirac quantization, we

cannot assure that the discretization corresponds to a quantization. We do

not know any experiment that supports this kind of discretization.



536 Liern and Olivert

It must be admitted that we have made a geometrical imposition, (17),

but it is plausible, as in flat space±time it holds trivially. Given that an SFB

aims to preserve most of the properties of a trivial SFB over the Minkowski
space±time (Liern and Olivert, 1995b), such an imposition is not very restric-

tive. Besides, it is reasonable that the conditions to obtain a discretization

must not be too general.

Given that (17) conditions the geometrical structure (curvature) of the

base manifold of the bundle, in any event nothing has been demanded of the

initial fiber bundle, but it has been made in its pullback. In this case the base
manifold is not the space±time manifold, but a hypersurface of simultaneity.

Finally, it may be a little surprising that we work with observations on

hypersurfaces of simultaneity. However, when it is required that the curves

start and finish at the same point, it makes sense to speak about an observation

at such a point, understanding that such an observation is instantaneous.
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